Genomic basis for the convergent evolution of electric organs

Jason R. Gallant et al.

Science 344, 1522 (2014); DOI: 10.1126/science.1254432

This copy is for your personal, non-commercial use only.

If you wish to distribute this article to others, you can order high-quality copies for your colleagues, clients, or customers by clicking here.

Permission to republish or repurpose articles or portions of articles can be obtained by following the guidelines here.

The following resources related to this article are available online at www.sciencemag.org (this information is current as of June 26, 2014):

Updated information and services, including high-resolution figures, can be found in the online version of this article at:
http://www.sciencemag.org/content/344/6191/1522.full.html

Supporting Online Material can be found at:
http://www.sciencemag.org/content/suppl/2014/06/25/344.6191.1522.DC1.html

This article cites 78 articles, 35 of which can be accessed free:
http://www.sciencemag.org/content/344/6191/1522.full.html#ref-list-1

This article appears in the following subject collections:
Evolution
http://www.sciencemag.org/cgi/collection/evolution
diminishing-returns models if the beneficial mutation rate is also higher in high-fitness backgrounds. 23. See (16) for a power analysis. 24. These are likely enriched for the most strongly beneficial mutations. Hence, if modular epistasis is prevalent, it is among these mutations that we expect the strongest trend. 25. J. E. Barrick et al., Nature 461, 1243–1247 (2009).

ACKNOWLEDGMENTS

We thank A. Murray, G. Justman, B. Good, D. van Dyken, M. McDonald for useful discussions; A. Subramaniam, G. Lang, M. Miller, and J. Koschesick for experimental advice and strains; and P. Rogers and C. Daly for technical support. Supported by the Burroughs Wellcome Foundation (S.K.), NSF graduate research fellowships (D.P.R., E.R.J.), and the James S. McDonnell Foundation, the Alfred P. Sloan Foundation, the Harvard Milton Fund, NSF grant PHY 1313638, and an award (GM100249 [M.M.D.]). Sequence data have been deposited to GenBank under BioProject identifier PRJNA422410.

SUPPLEMENTARY MATERIALS

www.sciencemag.org/content/344/6191/suppl/DC1

Materials and Methods

Figs. S1 to S12

Tables S1 to S12

References (26–34)

16 January 2014; accepted 28 May 2014

10.1126/science.1250939

NONHUMAN GENETICS

Genomic basis for the convergent evolution of electric organs

Jason R. Gallant,1,2*, Lindsay L. Traeger,3,4,5 Jeremy D. Volkening,4,5,6,7 Po- Hao Chen,6,7,8 Carl D. Novina,6,7,8 George N. Phillips Jr.,9 Rene Anand,10 Gregg B. Wells,11 Matthew Finch,12 Robert Guth,12 Graciela A. Unguez,12 James S. Albert,13 Harold H. Zakon,2,14,15 Manoj P. Samanta,16,† Michael R. Sussman1,†

Little is known about the genetic basis of convergent traits that originate repeatedly over broad taxonomic scales. The myogenic electric organ has evolved six times in fishes to produce electric fields used in communication, navigation, predation, or defense. We have examined the genomic basis of the convergent anatomical and physiological origins of these organs by assembling the genome of the electric eel (Electrophorus electricus) and sequencing electric organ and skeletal muscle transcriptomes from three lineages that have independently evolved electric organs. Our results indicate that, despite millions of years of evolution and large differences in the morphology of electric organ cells, independent lineages have leveraged similar transcriptional factors and developmental and cellular pathways in the evolution of electric organs.

Electric organs use electric organs (EOs) to produce electricity for the purposes of communication, navigation; and, in extreme cases, predation and defense (2). EOs are a distinct vertebrate trait that has evolved at least six times independently (Fig. 1A). The taxonomic diversity of fishes that generate electricity is so profound that Darwin specifically cited them as an important example of convergent evolution (2). EOs benefit as a model for understanding general principles of the evolution of complex traits, as fish have evolved other specialized noncontractile muscle-derived organs (3). Furthermore, EOs provide a basis to assess whether similar mechanisms underlie the evolution of other specialized noncontractile muscle derivatives, such as the cardiac conduction system (4).

EOs are composed of cells called electrocytes (Fig. 1B). All electrocytes have an innervated surface enriched in cation-specific ion channels and, on the opposite surface, an invaginated plasma membrane enriched in sodium pumps and, in some species, ion channels as well. The functional asymmetry of these cells, and their “in-series” arrangement within each organ, allows for the summation of voltages, much like batteries stacked in series in a flashlight. Although EOs originate developmentally from myogenic precursors, they are notably larger than muscle fibers (5). Further, they either lack the contractile machinery clearly evident in electron microscopy.

1Department of Zoology, Michigan State University, East Lansing, MI 48824, USA. 2BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA. 3Department of Genetics, University of Wisconsin, Madison, WI 53706, USA. 4Biotechnology Center, University of Wisconsin, Madison, WI 53706, USA. 5Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA. 6Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, USA. 7Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA. 8Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA. 9Department of Biochemistry and Cell Biology and Department of Chemistry, Rice University, Houston, TX 77005, USA. 10Department of Pharmacology and Department of Neuroscience, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA. 11Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX 77843, USA. 12Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA. 13Department of Biology, University of Louisiana, Lafayette, LA 70503, USA. 14University of Texas, Austin, TX 78712, USA. 15The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, The Marine Biological Laboratory, Woods Hole, MA 02543, USA. 16Systemix Institute, Redmond, WA 98053, USA.

*These authors contributed equally to this work. †Corresponding author. E-mail: msussman@wisc.edu (M.R.S.); manoj.samarnt@systemix.org (M.P.S.); hzakon@ austin.utexas.edu (H.H.Z.)

REFERENCES AND NOTES

16. See supplementary materials on Science Online.
19. Note that this includes two founders inadvertently picked from the same diversified population (16).
22. This result is also surprising in the diminishing-returns models because we expect fewer beneficial mutations to fix in high-fitness backgrounds where they provide a smaller selective advantage. This puzzle is related to the observation (25) that fixation rates in long-term evolution of E. col i are constant through time despite a declining rate of fitness increase. However, our result would be consistent with the

Fig. 3. Diminishing-returns epistasis among specific mutations. The fitness effect of knocking out genes gat2Δ, whi2Δ, and sfl1Δ declines with the fitness of the background strain. The homozygous knockout is a negative control. Error bars are SEM over biological replicates.
micrographs of muscle cells (Fig. 1B) or, if sarcomeres are present, as in mormyroid fish, they are disarrayed and noncontractile (Fig. 1B). Finally, electrocyte morphology varies widely: they can be long and slender, box-like, or flattened and pancake-like (Fig. 1B). Despite these differences in morphology, the three lineages of electric fish studied here share patterns of gene expression in transcription factors and pathways contributing to increased cell size, increased excitability, and decreased contractility.

We used next-generation sequencing technologies to construct a draft assembly of the *Electrophorus electricus* genome. Like all Gymnotiformes, *E. electricus* has a weak EO but is most famous for its distinct strong voltage EO. To inform gene predictions in the genome assembly, we generated short-read mRNA sequences from the main, Sachs', and Hunter's EOs, as well as the kidney, brain, spinal cord, skeletal muscle, and heart (6). This resulted in 29,363 gene models representing an estimated 22,000 protein-coding genes (table S1). Variance filtering of the gene models removed genes with low covariance among tissues, and

Fig. 1. Origins and diversity of EOs in vertebrates. (A) Phylogenetic tree of vertebrate orders and major groups of electric fishes, after (25). Geological periods and ages [in million years ago (MYA)] are shown at bottom. The origins of electrogenesis are indicated with bars (see legend) at internal branches. Black silhouettes denote lineages surveyed in the present study; gray silhouettes represent electric lineages that were not surveyed. (Top left) Sagittal sections through the *E. electricus* EO for the innervated, invaginated face and uninnervated smooth faces of the electrocyte and their in-series arrangement. (Top right) Sagittal section through the EO of the mormyroid *Paramormyrops kingsleyae*. Anterior is left; posterior is right. In mormyroids, innervation is restricted to a narrow region of the stalk system (S) protruding from the innervated, anterior face of the electrocyte. Also note the central filament of sarcomeric proteins (SP) between the multinucleated electrocyte faces. (Middle left) An electron micrograph of both skeletal muscle (SM) and electrocytes (EC) from the gymnotiform *S. macrurus*, which contain an amorphous cytoplasm devoid of sarcomeres: the striated, contractile structures that fill the cytosol of muscle cells. Peripheral nuclei (n) are marked in both electrocyte and muscle cells. In electrocytes, thick arrows point to mitochondria, thin arrows point to satellite cells, and arrowheads mark membrane-bound vesicular structures. Scale bar, 2 μm. (Middle right) An electron micrograph of an electrocyte of the mormyroid *P. kingsleyae*, illustrating the disorganized sarcomeric proteins in the center of the electrocyte. The outer edge of an electrocyte forms a “footplate” that apposes the connective tissue sheath (ct) surrounding the EO. The anterior face (a) of the electrocyte forms the major surface of the plate lying against the connective tissue surface. Fibroblast nuclei (fn), papillae (p), and stalk (st) are also indicated. Double arrows correspond to invaginations of the posterior face. Scale bar, 4 μm. [Image provided by Andrew Bass (Cornell University)] (Bottom left) A confocal reconstruction of an *E. electricus* electrocyte from anterior and posterior views. The nerve (N) innervating the innervated (Inv.) face is clearly visible, along with the many cholinergic nerve terminals (NT). The numerous invaginations (I) of the noninnervated (Non-Inv.) face are visible. (Bottom right) A confocal reconstruction of a *P. kingsleyae* electrocyte, clearly showing the protruding stalk system (S) from the anterior face. The stalk junction is innervated by motoneurons (N) in a highly localized fashion to contrast with *E. electricus*. Penetrations (P) are also visible in the electrocyte face.
subsequent k-means clustering (k = 12) revealed sets of tissue-specific cotranscriptionally regulated genes (6) (fig. S1). We focused primarily on a reduced set of genes that were highly up-regulated only in EOs (cluster 9, 211 genes) or down-regulated in EOs compared with skeletal and heart muscle (cluster 1, 186 genes).

Next, we sequenced and performed de novo assembly of the transcriptomes from EOs and skeletal muscles in two other Gymnotiformes from South America (Stenomystax macrurus and Eigenmannia virescens), as well as in two other species with independently evolved EOs, a mor- myroid from Africa (Brienyn-thumbus schlegeli) and the electric catfish from Africa (Malapterurus electricus). For each species, we assigned orthology between transcripts by reciprocal BLAST searching of the set of E. electricus genes followed by manual confirmation of the matches (6). We focused on convergent properties of EOs versus skeletal muscle among lineages, and we then examined patterns of gene expression in transcription factors and developmental pathways to determine candidate mechanisms underlying these similarities (Fig. 2). We highlighted genes likely to be involved in pheno-
typic characteristics of electrocytes relative to muscle, including (i) down-regulation of myogenic transcriptional “profile,” (ii) increased excitabil-
ity, (iii) enhanced insulation, (iv) elimination of excitation-contraction coupling, and (v) large size.

We found elevated expression of several tran-
scription factors (Fig. 2 and fig. S2) expressed early in muscle differentiation (7) that are typically down-
regulated in skeletal muscle after differentiation. Six2a is of particular interest, given that it is known to target ARE promoter elements in Na+/K+
adenosine triphosphatases (8, 9). Concordant with the expression of early muscle transcription factors is the down-regulation of some transcription factors involved in muscle differentiation (e.g., myogenin and six4b) in E. electricus, B. brachyistius, and M. electricus, although not in the gymnotiform S. macrurus. Interestingly, hey1, which is one of the most consistent highly up-regulated genes in the EOs across all groups of electric fishes, is abundant in zebrafish somites and down-regulated in mature muscle, and its overexpression in mam-
malian muscle precursor cells prevents their

![Fig. 2. Common toolkit for convergent evolution of EOs. (A) RNA-Seq was performed on five species, representing three independent origins of electrogenesis (cladogram, red lines). Also shown are plots of the log-
transformed ratio of EO to skeletal muscle expression genes (red, up-
regulated in EO; blue, down-regulated in EO) in several categories of function, including (i) nuclear transcription factors, (ii) genes that regulate cell excitation, (iii) genes that regulate cell size, (iv) genes involved in contraction and excitation contraction coupling, and (v) genes encoding proteins that surround individual electrocytes to provide the scaffold for insulation. hey1b data for E. electricus was derived from the Trinity transcriptome assembly (6). (B) Interaction of identified IGF signaling and transcription factors (TFs). IGF signaling pathway genes and early TFs influence the expression of muscle regulatory factors (MRFs), which ultimately lead to the expression of muscle-specific effector genes (table S3). (C) Interactions of genes identified in (A) are shown, grouped by func-
tion. For each, we list known patterns of expression in electric fish or the result of knockout studies in other vertebrates (table S4). IGFR, IGF receptor; MAPK, mitogen-activated protein kinase.](image-url)
differentiation into muscle (10). Furthermore, hey1 is transiently expressed in the developing cardiac conduction pathway, and its overexpression in the heart prevents assembly of the sarcomeres (4).

A key feature of EOs is that current dissipation must be minimized and conducted unidirectionally from the EOs through the body of the fish and into the water. We noted two collagen genes, col6a6 and col14a1a, that are up-regulated in EOs. The first is associated with muscle fibers, and the second is more generally expressed and ties the collagen fibers together. Collagen is deposited in the extracellular domain of basal lamina and is maintained by a cluster of molecules that span the membrane and attach to the cytoskeleton. Two of these membrane-spanning proteins, including a glycosyltransferase (gylt1b) and dystrophin (mutations of which cause muscular dystrophy) (11), are also up-regulated in EOs and are probably involved in assembling the components that direct the flow of current.

As electrolytes are much larger than muscle fibers, we hypothesized that this might be due to changes in insulin-like growth factor (IGF) signaling pathway genes (Fig. 2 and fig. S4). IGF signaling enhances body size and developmental rate in an organism-wide and tissue-specific fashion (15–18). IGF ligands are produced and released by muscle in an autocrine fashion (19), and differences in IGF signaling may result in differential growth of muscles. IGF signaling activates the insulin receptor substrate 1 protein (IRS1), which then binds to the regulatory subunit of phosphoinositide 3 kinase (PIK3) (20). PIK3 acts through distinct signaling targets to regulate cell size, cell proliferation, and protein synthesis and degradation (21). The IGF pathway is also autoregulated by a muscle-specific protein, Fbxo40, which brings IRS1 to an E3 ligase complex. Thus, up-regulation of IRS1 is likely a key step in increasing IGF signaling activity in electrolytes.

Finally, the nuclear-envelope-related protein (Net37), abundant in cardiac and skeletal muscle tissues (22), regulates autocrine and/or paracrine release of IGF signaling and is required for myogenic differentiation of mouse myoblast cells (23). We detected electrocyte-specific up-regulation of igf11, a gene for PI3K (p110a), and a net37-like gene in all lineages, as well as down-regulation of the negative inhibitor fbxo40. The net37-like protein was also recently reported to be highly expressed in the EO of another electric fish, the Torpedo ray (24). Together, the observed changes in expression in these key IGF signaling pathway genes suggest a conserved pathway among electrolytes that contributes to their increased size. The independent changes and the resulting enhancement in cell size highlight these genes as possible intracellular effectors in other insulin- or IGF-sensitive systems, as observed in male horned beetles (18).

Our analysis suggests that a common regulatory network of transcription factors and developmental pathways may have been repeatedly targeted by selection in the evolution of EOs, despite their very different morphologies. Moreover, our work illuminates convergent evolution of EOs and emphasizes key signaling steps that may be foci for the evolution of tissues and organs in other organisms.

REFERENCES AND NOTES

6. Materials and methods are available as supplementary materials on Science Online.

ACKNOWLEDGMENTS

This project has been funded in part by NSF grants MCB no. 1144012 (M.R.S.), CNS no. 1248309 (G.A.U.), and DEB no. 0741450 (J.S.A.); the W.M. Keck Foundation Distinguished Young Scholars in Medical Research (C.D.N.); NIH grants ROI GM084879 (H.H.Z.), ROI GM088670 (P.A.), and 1SCIGM092927-01A1 (G.A.U.); the Texas A&M University Health Science Center College of Medicine (G.B.W.); the Cornell University Center for Vertebrate Genomics (J.R.G.); the University of Wisconsin Genetics NIH Graduate Training Grant (L.L.T.), and the Morgridge Graduate Fellowship (J.D.V.); E. V. Armbrust provided computing assistance, and S. B. McKay assisted with data analysis. M.P.S. acknowledges useful discussions with R. Chakki, R. Luo, and J. Simpson. We thank J. Bayliss for dissection of E. electricus and R. Amasino for help in preparing this manuscript. M.R.S. and J.L.T. acknowledge the guidance of J. Hyman, M. Adams, and J. Speers from the University of Wisconsin Biotechnology Center for their excellent assistance in E. electricus sequencing. The raw sequencing reads have been deposited in the National Center for Biotechnology Information short-read archive for the E. electricus genome (BioProject ID: PRJNA249073) and transcriptome sequences of E. electricus, S. macrurus, E. wisaeins, M. electricus, and B. brachyistius (BioProject ID: PRJNA248545). The whole-genome assemblies and annotation, together with the transcriptome assemblies, are available at http://efishgenomics.zoology.msu.edu, along with BLAST and genome-browsing services.

SUPPLEMENTARY MATERIALS

www.sciencemag.org/content/344/6191/1522/suppl/DC1

Materials and Methods

Supplementary Text

Figs. S1 to S6

Tables S1 to S7

Supplementary References (26–91)

4 July 2014; accepted 6 June 2014

10.1126/science.1254432